Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
JAMA Intern Med ; 183(6): 520-531, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2267740

ABSTRACT

Importance: Given the high risk of thrombosis and anticoagulation-related bleeding in patients with hypoxemic COVID-19 pneumonia, identifying the lowest effective dose of anticoagulation therapy for these patients is imperative. Objectives: To determine whether therapeutic anticoagulation (TA) or high-dose prophylactic anticoagulation (HD-PA) decreases mortality and/or disease duration compared with standard-dose prophylactic anticoagulation (SD-PA), and whether TA outperforms HD-PA; and to compare the net clinical outcomes among the 3 strategies. Design, Settings, and Participants: The ANTICOVID randomized clinical open-label trial included patients with hypoxemic COVID-19 pneumonia requiring supplemental oxygen and having no initial thrombosis on chest computer tomography with pulmonary angiogram at 23 health centers in France from April 14 to December 13, 2021. Of 339 patients randomized, 334 were included in the primary analysis-114 patients in the SD-PA group, 110 in the HD-PA, and 110 in the TA. At randomization, 90% of the patients were in the intensive care unit. Data analyses were performed from April 13, 2022, to January 3, 2023. Interventions: Patients were randomly assigned (1:1:1) to receive either SD-PA, HD-PA, or TA with low-molecular-weight or unfractionated heparin for 14 days. Main Outcomes and Measures: A hierarchical criterion of all-cause mortality followed by time to clinical improvement at day 28. Main secondary outcome was net clinical outcome at day 28 (composite of thrombosis, major bleeding, and all-cause death). Results: Among the study population of 334 individuals (mean [SD] age, 58.3 [13.0] years; 226 [67.7%] men and 108 [32.3%] women), use of HD-PA and SD-PA had similar probabilities of favorable outcome (47.3% [95% CI, 39.9% to 54.8%] vs 52.7% [95% CI, 45.2% to 60.1%]; P = .48), as did TA compared with SD-PA (50.9% [95% CI, 43.4% to 58.3%] vs 49.1% [95% CI, 41.7% to 56.6%]; P = .82) and TA compared with HD-PA (53.5% [95% CI 45.8% to 60.9%] vs 46.5% [95% CI, 39.1% to 54.2%]; P = .37). Net clinical outcome was met in 29.8% of patients receiving SD-PA (20.2% thrombosis, 2.6% bleeding, 14.0% death), 16.4% receiving HD-PA (5.5% thrombosis, 3.6% bleeding, 11.8% death), and 20.0% receiving TA (5.5% thrombosis, 3.6% bleeding, 12.7% death). Moreover, HD-PA and TA use significantly reduced thrombosis compared with SD-PA (absolute difference, -14.7 [95% CI -6.2 to -23.2] and -14.7 [95% CI -6.2 to -23.2], respectively). Use of HD-PA significantly reduced net clinical outcome compared with SD-PA (absolute difference, -13.5; 95% CI -2.6 to -24.3). Conclusions and Relevance: This randomized clinical trial found that compared with SD-PA, neither HD-PA nor TA use improved the primary hierarchical outcome of all-cause mortality or time to clinical improvement in patients with hypoxemic COVID-19 pneumonia; however, HD-PA resulted in significantly better net clinical outcome by decreasing the risk of de novo thrombosis. Trial Registration: ClinicalTrials.gov Identifier: NCT04808882.


Subject(s)
COVID-19 , Thrombosis , Male , Humans , Female , Middle Aged , COVID-19/complications , Heparin/administration & dosage , Hemorrhage/chemically induced , Thrombosis/drug therapy , Thrombosis/prevention & control , Thrombosis/chemically induced , Anticoagulants/adverse effects
2.
Crit Care ; 26(1): 208, 2022 07 08.
Article in English | MEDLINE | ID: covidwho-1928198

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, many more patients were turned prone than before, resulting in a considerable increase in workload. Whether extending duration of prone position may be beneficial has received little attention. We report here benefits and detriments of a strategy of extended prone positioning duration for COVID-19-related acute respiratory distress syndrome (ARDS). METHODS: A eetrospective, monocentric, study was performed on intensive care unit patients with COVID-19-related ARDS who required tracheal intubation and who have been treated with at least one session of prone position of duration greater or equal to 24 h. When prone positioning sessions were initiated, patients were kept prone for a period that covered two nights. Data regarding the incidence of pressure injury and ventilation parameters were collected retrospectively on medical and nurse files of charts. The primary outcome was the occurrence of pressure injury of stage ≥ II during the ICU stay. RESULTS: For the 81 patients included, the median duration of prone positioning sessions was 39 h [interquartile range (IQR) 34-42]. The cumulated incidence of stage ≥ II pressure injuries was 26% [95% CI 17-37] and 2.5% [95% CI 0.3-8.8] for stages III/IV pressure injuries. Patients were submitted to a median of 2 sessions [IQR 1-4] and for 213 (94%) prone positioning sessions, patients were turned over to supine position during daytime, i.e., between 9 AM and 6 PM. This increased duration was associated with additional increase in oxygenation after 16 h with the PaO2/FiO2 ratio increasing from 150 mmHg [IQR 121-196] at H+ 16 to 162 mmHg [IQR 124-221] before being turned back to supine (p = 0.017). CONCLUSION: In patients with extended duration of prone position up to 39 h, cumulative incidence for stage ≥ II pressure injuries was 26%, with 25%, 2.5%, and 0% for stage II, III, and IV, respectively. Oxygenation continued to increase significantly beyond the standard 16-h duration. Our results may have significant impact on intensive care unit staffing and patients' respiratory conditions. TRIAL REGISTRATION: Institutional review board 00006477 of HUPNVS, Université Paris Cité, APHP, with the reference: CER-2021-102, obtained on October 11th 2021. Registered at Clinicaltrials (NCT05124197).


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Pandemics , Prone Position , Pulmonary Gas Exchange , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/therapy , Retrospective Studies , Supine Position
3.
BMJ Case Rep ; 15(4)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1832378

ABSTRACT

Impaired immune response with uncontrolled inflammation and various immunological disorders have been reported during SARS-CoV-2 infection. Here, we report a case of cold agglutinin disease occurring during a severe coronavirus disease 2019 (COVID-19) in a French intensive care unit. A patient was presented with acute respiratory distress syndrome, acute renal failure and haemolytic anaemia. Direct antiglobulin test was positive with a cold agglutinin titre of 1/512. No other cause than COVID-19 explained the occurrence of cold agglutinin disease; however, causality could not be formally established. Persistent anaemia despite transfusion therapy and the short-term life-threatening, prompted the infusion of a monoclonal anti-C5 antibody (eculizumab). Eculizumab therapy quasi-fully resolved haemolysis within a few days, but ultimately the patient died from his severe COVID-19 infection. Data regarding the specific treatment of cold agglutinin disease during COVID-19 are rare. Although additional studies are warranted, eculizumab may be considered in critical situations.


Subject(s)
Anemia, Hemolytic, Autoimmune , COVID-19 , Anemia, Hemolytic, Autoimmune/drug therapy , Anemia, Hemolytic, Autoimmune/etiology , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , Humans , SARS-CoV-2
4.
BMJ Open ; 12(4): e059383, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1816767

ABSTRACT

INTRODUCTION: COVID-19 induces venous, arterial and microvascular thrombosis, involving several pathophysiological processes. In patients with severe COVID-19 without macrovascular thrombosis, escalating into high-dose prophylactic anticoagulation (HD-PA) or therapeutic anticoagulation (TA) could be beneficial in limiting the extension of microvascular thrombosis and forestalling the evolution of lung and multiorgan microcirculatory dysfunction. In the absence of data from randomised trials, clinical practice varies widely. METHODS AND ANALYSIS: This is a French multicentre, parallel-group, open-label, randomised controlled superiority trial to compare the efficacy and safety of three anticoagulation strategies in patients with COVID-19. Patients with oxygen-treated COVID-19 showing no pulmonary artery thrombosis on computed tomography with pulmonary angiogram will be randomised to receive either low-dose PA, HD-PA or TA for 14 days. Patients attaining the extremes of weight and those with severe renal failure will not be included. We will recruit 353 patients. Patients will be randomised on a 1:1:1 basis, and stratified by centre, use of invasive mechanical ventilation, D-dimer levels and body mass index. The primary endpoint is a hierarchical criterion at day 28 including all-cause mortality, followed by the time to clinical improvement defined as the time from randomisation to an improvement of at least two points on the ordinal clinical scale. Secondary outcomes include thrombotic and major bleeding events at day 28, individual components of the primary endpoint, number of oxygen-free, ventilator-free and vasopressor-free days at day 28, D-dimer and sepsis-induced coagulopathy score at day 7, intensive care unit and hospital stay at day 28 and day 90, and all-cause death and quality of life at day 90. ETHICS AND DISSEMINATION: The study has been approved by an ethical committee (Ethics Committee, Ile de France VII, Paris, France; reference 2020-A03531-38). Patients will be included after obtaining their signed informed consent. The results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04808882.


Subject(s)
COVID-19 , Anticoagulants/therapeutic use , Blood Coagulation , Humans , Microcirculation , Multicenter Studies as Topic , Quality of Life , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL